If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+10k+4=0
a = 6; b = 10; c = +4;
Δ = b2-4ac
Δ = 102-4·6·4
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*6}=\frac{-12}{12} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*6}=\frac{-8}{12} =-2/3 $
| 9y-17=-26 | | 4x(x+4)=16x | | -1=5u-6 | | 12x–8x=16 | | |3x-2|=13 | | 7-3/8-h=-8 | | 8/x=4/3+9 | | 12z^2+7z-10=0 | | 2v+17=57 | | (8.5*11)x=7.50x | | 2p+5(6-4p)=-5p+4 | | 8-4x+x^2=0 | | 8-4x=x^2=0 | | -28+7x=4(5x+7)+x | | 12x+91=5x-14 | | 18+k=-6-8(k-3) | | 2(3x+-6)=6x+12 | | 3x-6+7x=-16 | | m-2=5m+6 | | 0,64-(1600/q^2)=0 | | 9/p=27/30 | | 4(x=5)+4x+5x | | 9+a=22 | | 0,64-1600/q^2=0 | | 15x+96=7x-16 | | -3x-8=5x | | |6-7y|=10 | | (4y+5)=(5y-6) | | -6+c=-65 | | X-5=-2x+10 | | 12n−24=-72 | | 4m-10=2m-14 |